
Int. J. Environ. Res. Public Health 2015, 12, 13602-13623; doi:10.3390/ijerph121013602 

 

International Journal of 
Environmental Research and 

Public Health 
ISSN 1660-4601 

www.mdpi.com/journal/ijerph 

Article 

Evaluation of Membrane Ultrafiltration and Residual 
Chlorination as a Decentralized Water Treatment Strategy for 
Ten Rural Healthcare Facilities in Rwanda 

Alexandra Huttinger 1,†, Robert Dreibelbis 2,†, Kristin Roha 1, Fidel Ngabo 3, Felix Kayigamba 4, 

Leodomir Mfura 4 and Christine Moe 1,* 

1 The Center for Global Safe Water, Sanitation and Hygiene at Emory University, 1518 Clifton Rd. 

NE, Atlanta, GA 30324, USA; E-Mails: ahuttin@emory.edu (A.H.); kmroha@emory.edu (K.R.) 
2 School of Civil Engineering and Environmental Science, The University of Oklahoma, 455 West 

Lindsey, Dale Hall Tower 521, Norman, OK 73019, USA; E-Mail: rdreibe@ou.edu  
3 The Republic of Rwanda Ministry of Health Maternal and Child Health Unit; P.O. Box 84, Kigali, 

Rwanda; E-Mail: ngabog@yahoo.fr  
4 The Access Project Rwanda, P.O. Box 7393, Kigali, Rwanda; E-Mails: felix@theaccessproject.com (F.K.); 

leodomirm@theaccessproject.com (L.M.)  

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: clmoe@emory.edu;  

Tel.: +1-404-727-9257; Fax: +1-404-727-4590.  

Academic Editors: Nicholas Frederick Gray and Panagiotis Karanis 

Received: 12 August 2015 / Accepted: 13 October 2015 / Published: 27 October 2015 

 

Abstract: There is a critical need for safe water in healthcare facilities (HCF) in  

low-income countries. HCF rely on water supplies that may require additional on-site 

treatment, and need sustainable technologies that can deliver sufficient quantities of water. 

Water treatment systems (WTS) that utilize ultrafiltration membranes for water treatment 

can be a useful technology in low-income countries, but studies have not systematically 

examined the feasibility of this technology in low-income settings. We monitored  

22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and 

chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. 

The systems were fully operational for 74% of the observation period. The most frequent 

reasons for interruption were water shortage (8%) and failure of the chlorination 
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mechanism (7%). When systems were operational, 98% of water samples collected from 

the HCF taps met World Health Organization (WHO) guidelines for microbiological water 

quality. Water quality deteriorated during treatment interruptions and when water was 

stored in containers. Sustained performance of the systems depended primarily on 

organizational factors: the ability of the HCF technician to perform routine servicing and 

repairs, and environmental factors: water and power availability and procurement of 

materials, including chlorine and replacement parts in Rwanda.  

Keywords: low-income countries; chlorination; implementation; maintenance; membrane 

water treatment; operation; quality; sustainability; ultrafiltration 

 

1. Introduction 

A reliable supply of safe water is essential in health care facilities (HCF) for infection control and 

hygiene [1,2]. There is a fundamental need in low-income countries, particularly in Sub-Saharan 

Africa, to improve basic infrastructure for water, sanitation, and hygiene in HCF [3,4]. Insufficient 

water supply and substandard infrastructure (particularly sanitary facilities) have been documented  

as deterrents to seeking care, and contributors to staff absenteeism [4–6]. HCF have daily  

consumption-intensive needs for water including cleaning, laundry, and personal hygiene, and high 

quality water is particularly necessary for medical procedures and drinking needs [1]. A recent review 

by the World Health Organization (WHO) of 54 countries estimated that 42% of HCF in low-income 

countries do not have an improved water source within 500 m [7]. Among secondary and tertiary HCF 

that serve rural populations, water supply coverage is lower: HCF in rural, underserved areas in Kenya 

and Ethiopia had improved water supply coverage that was 22% and 72% lower, respectively, than in 

the capital. Where HCF do have connections to a piped water supply from an improved source 

(including protected wells and rainwater in rural areas), there is a risk of contamination because water 

flow is often intermittent and infrastructure is substandard [8–10]. Intermittent water supply, whether 

from a networked or non-networked source, necessitates storage of water in containers in order to have 

a reliable water supply, and this presents an additional risk of recontamination [11,12].  

Decentralized on-site treatment, coupled with an adequate water supply, can provide high quality 

water in volumes suitable for small- to medium-scale applications, including HCF. Newer technologies 

allow high volume decentralized treatment systems (capacity ≥ 10,000 liters/day) to supply drinking 

water where centralized systems cannot reach populations or adequately meet demand [11,13,14]. 

Decentralized treatment using ultrafiltration (UF) technology for membrane water treatment is 

increasingly available and has growing potential for application in low-resource settings [13–16]. 

Published evaluations of decentralized systems using ultrafiltration membranes (0.01–0.10 μm 

membrane pore size, capable of high log-removal of protozoa and bacteria) for treatment of drinking 

water in low-resource settings largely consist of bench evaluations and trials that simulate a real-world 

application. Bench evaluations have demonstrated the UF membrane fouling rates, including the 

effects of oxidants and temperature [17–20]. In simulation trials, UF systems have been used to treat 

the same water sources used by the intended target populations, but the water treatment systems 
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(WTS) were entirely managed by the research investigator [21,22]. These studies offer valuable 

evidence about the operational efficacy of WTS including evidence that the lifespan of membranes is 

highly dependent on fouling rates, constant and intermittent operation result in different membrane 

fouling patterns, and that natural organic matter in source water correlates strongly with fouling of 

membranes. Collectively, these bench evaluations and simulation trials demonstrate that UF can 

operate under less than ideal conditions; however, they have not addressed the feasibility and 

continued operation of advanced WTS or the necessary supporting infrastructure in a real-world  

low-income setting. 

Only a small number of studies have assessed UF technology in a real-world setting, specifically 

decentralized WTS performance under actual in situ conditions and managed by local operators.  

In Mozambique and Ecuador, Arnal and colleagues described the technical performance of UF 

membrane WTS that supplied purified water to a hospital and a school. The Mozambique study 

evaluated design and installation of a hospital WTS and training of two local technicians for operations 

and maintenance, but operational constraints were not discussed [23]. The Ecuador study evaluated six 

months of the operation of a school WTS and demonstrated that it was feasible to integrate the WTS 

into existing local infrastructure to provide large volumes of purified water, but post-treatment 

chlorination was necessary to maintain water quality at the points of use [24]. Sima and colleagues 

examined existing supply models for purified water in Southeast Asia, noting that drinking water refill 

stations that use multi-stage treatment, including UF and chlorination, are a viable and growing 

market-based solution for safe drinking water provision [15]. The study discussed the appropriateness, 

profitability, and sustainability of these technologies for drinking water treatment in low-income 

settings, but did not provide details on operations and maintenance of the WTS, technical challenges, 

or factors contributing to success. Molelekwa described the application of a UF membrane WTS for a 

rural village water supply in South Africa, including technical and administrative engagement for the  

start-up of the pilot water treatment plant and training of one local technician; intermittent local supply 

of diesel fuel necessary to run the pump was identified as the principal constraint to water treatment 

system operation [25]. Each of these studies concluded that limited access to capital for start-up  

(for application outside of a donation model), weak supply chains for consumables, and lack of spare parts, 

tools and qualified technicians to perform maintenance and repairs, are significant barriers for the 

sustainable use of decentralized water treatment systems in low-income settings. The observations 

provided by Arnal and Molelekwa are limited to the operation and maintenance of one WTS at one site. 

This study describes system performance at ten sites and compares how site-to-site differences in WTS 

configuration, water and power availability, and operations and maintenance contributed to WTS 

functionality and water quality. 

2. Experimental Section  

We conducted a prospective performance evaluation of WTS using membrane UF and residual 

chlorination that were installed in ten healthcare facilities in Rwanda in order to assess the feasibility 

of these systems to improve water quality in low-resource settings when placed in an institutional 

setting, and to proactively identify determinants of system sustainability. We collected a variety of 

data, including weekly operation logs, monthly water quality assessments, and maintenance and repair 
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activity logs from the implementing organization, in order to identify the extent to which systems 

performed at capacity and to examine barriers to program success. We discuss our results within the 

framework of health service sustainability. 

2.1. Study Setting  

This study was conducted among rural, secondary public health care facilities (classified as “health 

centers”) that are part of the Rwandan national health system. Health centers provide essential  

primary care services, including consultation, antenatal care, maternal care for normal deliveries, 

pharmaceuticals, family planning, pediatric care and nutrition, and laboratory diagnostics. The health 

centers were chosen to receive water purification systems donated by the General Electric (GE) 

Corporate Citizenship program Developing Health Globally™ based on the existing supporting 

infrastructure (water and power supply), maintenance staff, and existing oversight and support through 

district-level hospital affiliations.  

Health centers in the Northern, Eastern, and Western Provinces of Rwanda were targeted for 

participation. The Northern and Western Provinces have high population density and heavy rainfall, 

and improved water source coverage is lower than the rest of the country [26]. The Eastern Province 

experiences periods of drought, and the centralized water distribution system is recognized as needing 

major repair. These are also areas where Developing Health Globally maintains active health systems 

strengthening programs, thereby facilitating program delivery.  

2.2. Intervention  

2.2.1. Inclusion Criteria and Site Selection 

Inclusion criteria for health centers to receive the water purification system were: (1) year-round 

solar and/or grid power with outages lasting more that 24 h occurring less than once per month,  

(2) piped, well and/or rain water available on the plot, (3) water intended for drinking and medical 

purposes below WHO quality standards of for E. coli, total coliforms and residual chlorine,  

and (4) willingness of the health center director to receive the water purification system donation and 

participate in the research project. The Ministry of Health of Rwanda nominated 24 candidate health 

centers in the target areas, and 17 of these met the inclusion criteria. Two of the 17 opted out of the 

donation program because the management did not want to add a water purification system.  

The directors of these health centers believed the water quality, despite not meeting WHO guidelines, 

did not need to be improved using the WTS offered. Technical advisors visited the remaining 15 facilities 

and omitted two based on concerns about water infrastructure and seasonal water shortages.  

Three additional facilities were not included because of their relative isolation from population centers. 

A total of ten health centers were included in the intervention.  

2.2.2. Water and Power Supply at Participating HCF 

At the time of recruitment, three participating HCF had solar power and by the end of the 

observation period, all sites had grid power supplied by the national utility. All sites had some 

rainwater storage, ranging in volume from 13 to 100 m3. A forthcoming study by the authors 
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characterizes the state of water and power supply, and infrastructure for water, sanitation and hygiene 

in the candidate and selected facilities with comparison to available information on the state of HCF in 

Rwanda and regionally in East Africa.  

2.2.3. Water Purification Systems 

The WTS had two core treatment processes: ultrafiltration (UF) and chlorination, and consisted of a 

500 μm pre-filtration screen, two 0.02 μm UF units, and a hydraulically-driven pump to deliver dilute 

calcium hypochlorite solution post-filtration. The UF units were 55 m2 surface area of polyvinylidene 

fluoride (PVDF) hollow fiber membrane with outside-in flow path, flow range from 45 to 180 m3/day 

and trans-membrane pressure range from 0 to 40 psi [27]. The rejection rate for bacteria and viruses by 

the ultrafiltration unit was 99.9% [28]. The units were independently certified by NSF International for 

compliance with US and international standards. The estimated lifespan of the units for treating low 

turbidity water (<1 NTU), assuming proper maintenance, was over 20 years [29]. WTS were designed 

to have a peak output of 50,000 liters/day [30]. WTS were installed directly into the existing health 

center water distribution systems. Where possible, rainwater storage systems were integrated into WTS 

in order to reduce demand on metered water from local utilities. For this reason, electrically powered 

pumps were incorporated into the systems. The average cost of each water purification system was 

approximately 15,000 USD (equipment only) [30]. 

Technical advisors developed site-specific installation plans for each WTS that maximized 

integration of on-site rainwater catchment and minimized use of electricity while maintaining adequate 

water flow rates throughout the facility. The topography of each site and source water pressure 

influenced system configuration at the ten sites. There were five general configuration types: eight 

facilities received both pumps and pressure tanks, four post-treatment elevated storage tanks were 

constructed, at eight sites rainwater sources were integrated into the treatment system, and four 

underground post-treatment chambers were constructed to increase chlorine contact time before 

consumption. (See supplemental information for water purification system configuration diagrams.) 

Management of water supplies, including piped water, rainwater from on-site tanks, and water stored 

in holding tanks, was performed using manual valves in site-specific configurations. Bypasses were 

plumbed into all components of the system to allow isolation of components and to ensure water 

availability in the event of filtration system failure. Where possible, routine operation and maintenance 

tasks for the water purification system were manually operated (as opposed to automated) to reduce 

complexity. The pre-filter and ultrafiltration units had manual controls for cleaning procedures, and the 

chlorine dosing system was hydraulically-driven and did not require electrical power. 

2.2.4. Training and Start-Up 

The WTS were donated and installed by GE’s corporate citizenship program Developing Health 

Globally™ in partnership with Assist International and the Government of Rwanda. WTS were 

installed and launched in two phases: March 2012 and December 2012. Health center maintenance 

staff were identified as the primary operators of the WTS and were trained on daily and weekly 

operations and maintenance through demonstrations and visual aids (poster diagrams in the local 

language in the MF system buildings). Trainings delivered to system operators focused on routine 
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operations and maintenance, including: daily backwashing of the UF units, weekly cleaning of the  

pre-filter, weekly preparation of chlorine solution, and valve configuration for optimizing water use 

and storage.  

Priorities during this start-up phase were: (1) ensuring sound plumbing and electrical work to 

integrate the water purification systems into the existing health center infrastructure, and (2) providing 

on-going training to health center staff for WTS routine operations and maintenance. Preventative 

maintenance beyond daily and weekly tasks performed by the on-site operators, such as routine 

servicing of chlorine dosing systems did not occur during the observation period.  

Following the initial installation and commissioning of the WTS and training health center staff in 

routine operation and maintenance, the WTS were operated and managed by health center staff with 

continued support from the implementing organization through a service contract with local 

contractors. A field coordinator: (1) provided oversight for plumbing and electrical work executed by 

local contractors, (2) coordinated response to repair needs, and (3) delivered on-going training to the 

HCF technical staff for routine operations and maintenance. No training on system component 

servicing (such as pump or chlorine dosing systems) was provided to system operators.  

The implementing organization determined that the level of complexity of those operations was 

beyond the technical capacity of health center personnel, and necessary tools were not available at any 

health center.  

2.3. Program Monitoring  

2.3.1. Data Collection and Monitoring 

Routine data collection started in March 2012 and continued through December 2013. Performance 

and operation were assessed through two primary data collection activities:  

Weekly WTS assessments: Once per week, the field coordinator visited each health center to inspect 

the water purification system and report on operations, routine maintenance, and any abnormalities in 

system functions. Additionally, daily records maintained by system operators were checked for 

completeness. Daily records included water meter readings and pre- and post- backwashing pressure 

before and after the ultrafiltration unit. These reports were compiled and digitized by trained field 

investigators on a weekly basis.  

Monthly Facility surveys: Monthly facility surveys were performed during unannounced site visits 

by trained field investigators working independently from the implementation team. Regardless of 

purification system operation, field investigators observed water availability and collected water 

samples immediately following the WTS and from points of use in surgery, maternity, male and 

female wards, and pharmacy. For additional buildings outside of those predefined services, such as 

administration, laboratory and voluntary counseling and testing, water availability was observed and a 

sample was collected from one point of use per building. Points of use in all services were sinks with 

faucets and improved storage containers. During water interruptions, alternative sources included rain 

tanks and water from containers filled off-site. If the point of use was a container, water was only 

sampled if it was reported that the water was used for drinking. Duplicate samples were collected from 

each sampling point. 
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Performance data from the WTS system weekly assessments and monthly facility surveys were 

combined in event logs of systems operation. The log was supplemented with information about 

repairs performed by the implementation partner and local contractors from the day of installation 

through December 2013 for each facility.  

2.3.2. Data Analysis 

The WTS event logs were analyzed in Microsoft Excel (Redmond, WA, USA). These data were 

used to classify each site-specific day of operation as either fully operational or experiencing service 

interruptions with an identified cause. For a system to be classified as fully operational, three criteria 

were assessed: (1) there was piped water and electricity available on site; (2) the filtration system and 

associated components were working as intended; and (3) the filtration system was used as intended. 

Service interruptions included any event in which these criteria were not met. Service interruptions 

were further classified into water interruptions in which water was not available, or treatment 

interruptions in which some part of the treatment process, such as the chlorine dosing system, was 

compromised. We report system performance as the total number of days that the WTS were fully 

operational out of the total number of days of observation. For reported repair needs, the number of 

days that passed between reporting the problem and repair were used to calculate time to resolution. 

For key components that failed during the observation period, we calculated time to failure as the 

number of days from installation until the time the particular component failed. Mean time to 

resolution and time to failure were calculated for comparable issues and components of the WTS 

across the ten sites. 

Water samples were collected immediately following the treatment system (chlorinated UF 

permeate) and from points of use in each service of the health centers. Water samples were placed on 

ice and processed within 3 h to assess levels of chlorine residual and turbidity, and within 12 h of 

collection to assess concentrations of E. coli and total coliforms. Physio-chemical testing was 

performed using portable digital meters (Hach Co., Loveland, CO, USA) and the DPD technique for 

chlorine residual detection. Water samples were tested for total coliforms and E. coli using the  

Quanti-Tray method and Colilert growth medium (IDEXX Laboratories, Inc., Westbrook, ME, USA). 

Quanti-Tray method estimates the most probable number (MPN) of colony forming units of 

microorganisms. The lower and upper detection limits were <1 and 2419.6 MPN/100 mL. Frequencies 

or means of key descriptive variables were calculated.  

Water quality measures were compared to system performance data in order to examine water 

quality by WTS status at the time of sample collection (fully operational, treatment interruption,  

or water interruption). Water quality measures were also stratified by sampling point (water sampled 

directly from a tap or from a storage container). Unadjusted odds ratios were calculated for presence of 

total coliforms/E. coli in 100 mL samples by WTS status and sampling point. Water quality measures 

for samples of chlorinated UF permeate collected immediately following the treatment system were 

analyzed separately. All water quality data were analyzed with SAS v9.3 (SAS Institute, Cary, NC, USA). 
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2.3.3. Ethics 

The study was reviewed and approved by the Institutional Review Board at Emory University  

(No. IRB00053040, as amended), and the Rwanda National Ethics Committee (No. 646/RNEC/2014). 

3. Results and Discussion 

3.1. Water Purification System Performance  

3.1.1. Operations and Maintenance 

Operations, maintenance, service, and repairs were monitored from the day of installation through 

December 2013, with a mean observation period of 439 days (range: 320–621 days per site).  

Overall, the WTS were fully operational for 74% of the observation period. WTS at five sites were 

fully operational for >80% of the observation period, four were fully operational for 59%–74% of the 

observation period, and one was operational for <50% of the observation period (range: 40%–100% 

per site) (Figure 1). This corresponds to a total of 256 days of service interruption per 1000 days of 

observation. Of the 1130 days of service interruption during the observation period, 36% were 

treatment interruptions and 64% were water interruptions that resulted in no provision of piped water 

at the health centers (Table 1). 

 

Figure 1. Event log timeline of water treatment system service interruptions and causes at 

ten health centers in rural Rwanda, March 2012–December 2014. 
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Table 1. Causes and duration of water treatment system service interruptions at ten health 

centers in rural Rwanda, March 2012–December 2014. 

Treatment Interruption * Water Interruption ** 

Reason for service 

interruption 

User 

bypass 

Chlorine dosing 

pump failure 

Water 

shortage

Pump/electric 

failure 

Underground 

contact 

chamber leak 

Other 1 

Number of events 2 12 22 4 5 4 

Number of sites at which 

events occurred 
1 7 8 4 4 4 

Days of interruption 

(proportion of total 

observed interruption 

period) 

91 

(0.08) 

315 

(0.28) 

367 

(0.32) 
218 

(0.19) 

75 

(0.07) 

64 

(0.06) 

Mean time to failure in 

days (range) 2 
N/A 

330 

(61–542) 
N/A 

161 

(2–390) 

300 

(171–427) 
N/A 

Mean time for repairs to 

be completed in days 

(range) 2 

N/A 
24  

(1–37) 
N/A 

55  

(15–125) 

18  

(4–53) 
N/A 

* Treatment interruption indicates periods when the mechanisms for ensuring safe water at the point 
of were compromised. ** Water interruption indicates periods when the piped water supply was not 
available. 1 Reasons for other service interruptions: 3 power outages, 1 major leak. 2 Time to failure 
and time for repairs to be completed were not recorded for user bypass, water shortage or other 
interruptions because these incidents were not attributed to events caused by the infrastructure 
modification made by the program in order to integrate the WTS into health center piped  
water systems. 

3.1.2. Treatment Interruptions 

Treatment interruptions occurred for 9% of the total observation period and accounted for 36% of 

service interruptions overall. The most common cause of treatment interruption was failure of the 

chlorine dosing system, which occurred 12 times at seven sites (Figure 2). The 12 observed events 

were the same type of problem: loss of suction due to strain on, and abrasion to, gaskets. The average 

time to failure for chlorine dosing systems was 330 days (range: 61–542 days). Treatment interruptions 

due to chlorine dosing system failures accounted for 70 days per 1000 days of observation across all sites.  

During the initial start-up period, short instances (1–3 days) of user bypass were observed at half of 

the sites. Reasons for bypass included failure to turn system on after a water or power shortage and 

health center visitors tampering with valves. Persistent and intentional bypassing of the water 

purification system only occurred at one site (site “C”), accounting for 8% of days of service 

interruption (<2% of the total observation period) (Figure 2). At this site, reasons offered by health 

center staff for bypassing the water purification system included greater expenditure on water 

following system start-up, wastage of water during the daily UF unit backwash cleaning procedure, 

and leaks within the piped water infrastructure within the health center. Additionally, the way the WTS 

was integrated into the piped water infrastructure involved 11 manual valves for daily operations, as 

compared to the simplest configuration (site “D”), which involved four valves (supplemental  

Figures S1–S5 depict, from most to least complex, the five configurations of WTS that were applied).  
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Figure 2. Functionality of water treatment systems at ten health centers in rural Rwanda, 

March 2012–December 2014. 

3.1.3. Water Interruptions  

The most frequent and widespread reason for water interruption was water shortage at the source, 

usually a municipal distribution system supply. Water shortage accounted for 32% of the total service 

interruptions (9% of the total observation period) (Figure 1). Only two sites did not experience a water 

shortage during the observation period, and the average duration of water shortage events was 15 days 

(median: 10 days, range: 1–70 days) (Table 1).  

Pump or electrical failures resulted in four water provision interruptions, each occurring at a 

separate site (Figure 2). These included: failure of an existing pump, failure of a newly installed pump, 

failure of a newly installed electrical switch, and failure of a newly installed solar energy system due to 

storm damage. These failures occurred at random and did not indicate a specific design or component 

weakness. Pump or electrical failures accounted for 19% of all water interruptions (5% of total 

observation period) (Figure 1). Problems with chlorine contact chambers, installed in four health 

facilities, accounted for 7% of all water service interruptions. Leaks at joints of different width or leaks 

at elbows in the contact chambers occurred at three of the four sites with this design feature; these 

were significant leaks that necessitated shut off of the water main. These problems indicated a 

weakness in the construction executed on-site by local contractors. Time to failure for chlorine contact 

chambers ranged from 180 to 425 days (Table 1).  
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3.1.4. Time to Resolve System Interruptions 

The duration of all system interruptions, excluding water shortages, power outages, and user 

bypass, was dependent on the response time of local contractors hired by the implementing 

organization. For all technical problems, including chlorine dosing system failures, electrical or pump 

failures, or chlorine contact chamber leaks, the average time to resolve the problem was 30 days.  

Time to resolve was shortest for leaks in contact chambers (average: 18 days) and chlorine dosing 

system failures (average: 24 days). Average time to resolve pump or electrical failures was 55 days 

(range: 15–125 days) (Table 1). 

In addition to technical problems that caused service interruptions, minor events such as small leaks 

associated with the WTS were also reported. During the observation period, there were 30 minor 

events and the average time to resolve was 27 days.  

3.2. Water Quality  

Because of changes in water availability at specific sampling points in each health center between 

rounds of data collection, the number of water samples collected varied from month to month. In the 

12 months of water quality monitoring, a total of 592 water samples were collected: 446 samples when 

the systems were fully operational, 96 samples during treatment interruptions, and 50 samples during 

water interruptions. Forty-seven samples were collected directly following the MF systems:  

40 samples when the systems were fully operational, and seven samples during quality interruptions.  

Water samples were not collected from the primary piped water and rain water supplies  

(pre-treatment) during the monthly water quality observations. However, source water from rain tanks 

was collected and tested during the pre-intervention baseline assessment: total coliforms were detected 

in 91% of samples and E. coli in 17% of samples, the mean turbidity was 2.10 NTU (range: 0.17–7.31). 

All source water samples, including the piped water supplies, had <0.1 mg/L of residual free chlorine [31]. 

3.2.1. Quality of Water in Samples of Chlorinated UF Permeate Collected Immediately Following  

the WTS 

When the WTS were fully operational, concentrations of total coliforms and E. coli were less than 

one MPN in all 100 mL samples (N = 40). The mean free chlorine residual was 0.43 mg/L, but the 

median free chlorine residual was 0.02 mg/L, which was the lower limit of detection of the digital 

colorimeter used to measure chlorine residual. Only 11 of 40 samples (28%) had free chlorine residual 

that met the World Health Organization (WHO) guideline of ≤0.2 mg/L. (Results are presented in 

supplemental information Table S1). During treatment interruptions, >1 MPN/100 ml total coliforms 

were found in one of six samples, and no samples had >1 MPN/100 ml E. coli. The median free 

chlorine residual was 0.02 mg/L (results are presented in supplemental information). The WTS  

were not in operation during water interruptions and thus chlorinated UF permeate samples were  

not available. 



Int. J. Environ. Res. Public Health 2015, 12 13613 

 

3.2.2. Quality of Water at Points of Use 

When the WTS were fully operational, 397 (89%) of water samples collected from points of use 

within the health centers—including water sampled from storage containers—met the WHO guideline 

for drinking water quality of <1 MPN total coliforms per 100 mL, and 432 (97%) of samples met 

WHO guideline of <1 MPN E. coli per 100 mL. The mean free chlorine residual was 0.09 mg/L (range: 

0–1.9). During treatment interruptions, when piped water was flowing but the WTS was not fully 

operational, 79 (82%) of the 96 samples met WHO guidelines for total coliforms, and 93 (97%) met 

WHO guidelines for E. coli. The mean free chlorine residual was 0.02 mg/L (range: 0–0.17) (Table 2). 

Of the 369 tap water samples collected when the WTS were fully operational, 344 (94%) of 

samples met the WHO guideline for total coliforms, 363 samples (98%) met the WHO guideline for  

E. coli, and the mean free chlorine residual was 0.1 mg/L (range: 0–2.20). Eighty-three samples were 

collected from taps during treatment interruptions, 70 (84%) of samples met the WHO guideline for 

total coliforms, 81 (98%) met the WHO guideline for E. coli, and the mean free chlorine residual was 

0.02 mg/L (range: 0–0.17) (Table 3). During treatment interruptions, samples collected from taps were 

2.7 times more likely to have one or more total coliforms MPN per 100 mL (OR: 2.7, 95% CI: 1.3–5.5) 

compared to tap samples collected when the WTS were fully operational. (Table 3), and there was no 

significant difference (p = 0.6) in the proportion of tap samples with >1 MPN E. coli/100 mL when the 

WTS were operational vs. during treatment interruptions.  

Table 2. Quality of water from samples collected at points of use when water treatment 

systems were fully operational, during treatment interruptions, and water interruptions. 

 WTS Fully Operational 
n (%) 

Treatment Interruption * 
n (%) 

Water Interruption ** 
n (%) 

Number of samples 446 96 50 
E. coli (MPN †/100 mL) 

<1 432 (96.9) 93 (96.9) 39 (78.0) 
1–10 11 (2.5) 1 (1.0) 2 (4.0) 
>10 3 (0.6) 2 (1.2) 9 (18.0) 

Total Coliforms (MPN †/100 mL) 
<1 397 (89.2) 79 (82.3) 31 (62.0) 

1–10 26 (5.8) 7 (7.3) 3 (6.0) 
>10 22 (5.0) 10 (10.4) 16 (32.0) 

Number of samples 440 84 47 
Free chlorine residual (mg/L) †† 

Mean  0.12  0.02  0.03  
Median 0.02 0.02 0.02 
Range <0.02–2.20 <0.02–0.17 <0.02–0.35 

Total chlorine residual (mg/L) †† 
Mean  0.18  0.06  0.08  

Median 0.06 0.04 0.04 
Range <0.02–2.20 <0.02–0.26 <0.02–0.48 

Turbidity (NTU) 
Mean  1.13  1.22  3.36  

Median 0.70 0.74 1.34 
Range 0.02–26.63 0.05–6.92 0.39–49.61 

* Treatment interruption indicates periods when the mechanisms for ensuring safe water at the point of use, 
such the chlorine dosing mechanism, were compromised. ** Water interruption indicates periods when the 
piped water supply was not available, such as during interruptions in the piped water supply and during pump 
failures; see Table 1 for causes and duration of events. † Most Probable Number. †† Limits of detection for 
free and total chlorine residual were 0.02 to 2.20 mg/L. 
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Table 3. Quality of water from samples collected from taps and storage containers when 

water treatment systems were fully operational and during treatment interruptions. 

 WTS Fully Operational Treatment Interruption * 
 Taps n (%) Containers n (%) Taps n (%) Containers n (%) 

Number of 
samples 

369 77 83 13 

E. coli (MPN **/100 mL) 

<1 363 (98.4) 69 (89.6) 81 (97.6) 12 (92.3) 
1–10 6 (1.6) 5 (6.5) 1 (1.2) 0 (0) 
>10 0 (0.0) 3 (3.9) 1 (1.2) 1 (7.69) 

Total Coliforms (MPN **/100 mL) 

<1 344 (93.5) † 53 (68.8) 70 (84.3) † 9 (69.2) 
1–10 16 (4.4) 10 (13.0) 6 (7.23) 1 (7.69) 
>10 8 (2.1) 14 (18.2) 7 (8.43) 3 (23.8) 

Number of 
samples 

364 76 83 13 

Free chlorine residual (mg/L) †† 

Mean  0.13 0.11 0.02 <0.02 
Median 0.02 0.02 <0.02 <0.02 
Range <0.02–2.20 <0.02–2.20 <0.02–0.17 <0.02–0.04 

Total chlorine residual (mg/L) †† 

Mean  0.19 0.15 0.06 0.02 
Median 0.07 0.04 0.04 0.02 
Range <0.02–2.20 <0.02–2.20 <0.02–0.26 <0.02–0.09 

Turbidity (NTU) 

Mean  1.09 1.30 1.17 1.49 
Median 0.71 0.62 0.74 0.74 
Range 0.02–20.07 0.12–26.6 0.05–6.92 0.12–5.76 

* Treatment interruption indicates periods when the mechanisms for ensuring safe water at the point of use, 
such the chlorine dosing mechanism, were compromised. ** Most Probable Number. † During treatment 
interruptions, samples collected from taps were 2.66 times more likely to have one or more total coliforms 
MPN per 100 mL (OR: 2.7, 95% CI: 1.3–5.5) compared to tap samples collected when the MF systems were 
fully operational. †† Limits of detection for free and total chlorine residual were 0.02 to 2.20 mg/L. 

3.2.3. Quality of Water in Storage Containers 

Because of the realities of intermittent water supply at health centers, incomplete coverage of the 

piped water network in all parts of the health center, and delays in fixing broken taps, post-treatment 

storage of water, in jerry cans and improved storage containers (defined as having a narrow mouth and 

a spigot for water access), was regularly observed at all sites. When WTS were fully operational, 82% 

of water samples were collected from taps and 18% were collected from storage containers. Among 

the 77 water samples collected from containers when the treatment systems were fully operational,  

53 (69%) met the WHO guideline for total coliforms, 69 (90%) met the WHO guideline for E. coli, 

and the mean free chlorine residual was 0.11 mg/L (range: 0–2.20) (Table 3). When the WTS were 

fully operational, water samples collected from containers were 6.5 times less likely to meet the WHO 

guideline for total coliforms than samples collected from taps (OR: 6.49, 95% CI: 3.43–12.25),  

and were 7 times less likely to meet the WHO guideline for E. coli (OR: 7.01, 95% CI: 2.36–20.85) 

(Table 4). The mean concentration of free chlorine in water samples collected from containers was 

0.11 mg/L (range: 0–2.20), marginally lower than the mean concentration in samples collected from 

taps (Table 3). 
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During treatment interruptions, 13 samples were collected from containers; 9 (69%) of these 

samples met the WHO guideline for total coliforms, 12 (92%) met the WHO guideline for E. coli and 

the mean free chlorine residual was 0.01 mg/L (range: 0–0.04) (Table 3). There was not a significant 

difference between the proportion of water samples from containers with >1 MPN/100 mL total 

coliforms or E. coli collected during treatment interruptions and when the WTS were fully functional. 

Considering all the water samples (from taps and containers), the odds of a water sample collected 

during treatment interruption meeting the WHO guideline for total coliforms or E. coli were not 

significantly different compared to when the WTS systems were fully functional (total coliforms  

OR: 1.00, 95% CI: 0.28–3.53; E. coli OR: 1.78, 95% CI: 0.97–3.25) (Table 4).  

Fifty water samples were collected during water interruptions (when piped water was not available). 

The majority of these samples were collected from alternative water sources: rain water tanks  

(no treatment) or containers that were filled off-site and may have been treated with a disinfectant. 

Thirty-one samples (62%) met the WHO guideline for total coliforms, 79 (78%) met the WHO 

guideline for E. coli, and mean free chlorine residual was 0.03 mg/L (range: 0–0.35) (Table 2). 

Considering all water samples from taps, containers, and alternative sources during water 

interruptions, the odds of a water sample meeting the WHO guideline for total coliforms during water 

interruptions was over five times lower compared to when the WTS were fully functional (OR: 5.1,  

95% CI: 2.66–9.66), and the odds of a water sample meeting the WHO guideline for E. coli during 

water interruptions was over 8 times lower compared to when the WTS were fully functional  

(OR: 8.70, 95% CI: 3.70–20.47) (Table 5). 

Table 4. Proportions and odds ratios of water samples with total coliforms and E. coli 

collected from taps and containers when water treatment systems were fully operational. 

Point of Use Type 
≥1 total coliform MPN †/100 mL ≥ 1 E. coli MPN †/100 mL 

n (%) OR (95% CI) n (%) OR (95% CI) 

Tap 24 (6.5) ref 6 (1.6) ref 

Container * 24 (31.2) 6.49 (3.43–12.25) 8 (10.4) 7.01 (2.36–20.85) 

* Jerry can or improved water storage container. † Most Probable Number (MPN). 

Table 5. Proportions and odds ratios of water samples with total coliforms and E. coli 

collected when water treatment systems were fully operational, during water quality 

interruptions and during water provision interruptions *. 

System Status 
≥ 1 total coliform MPN † /100 mL ≥ 1 E. coli MPN †/100 mL 

n (%) OR (95% CI) n (%) OR (95% CI) 
WTS Fully Operational 48 (11) ref 14 (3) ref 

Treatment Interruption ** 17 (18) 1.78 (0.97–3.25) 3 (3) 1.00 (0.28–3.53) 
Water Interruption *** 19 (38) 5.07 (2.66–9.66) 11 (22) 8.70 (3.70–20.46) 

* Analysis inclusive of water samples collected from taps and containers when WTS were fully operational 
and during treatment interruptions, and samples collected from rain tanks and containers filled off-site during 
water interruptions. ** Treatment interruption indicates periods when the mechanisms for ensuring safe water 
at the point of use, such the chlorine dosing mechanism, were compromised. *** Water interruption indicates 
periods when the piped water supply was not available, such as during interruptions in the piped water supply 
and during pump failures; see Table 1 for causes and duration of events. † Most Probable Number. 
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3.3. Discussion  

3.3.1. Determinants of MF System Performance 

Based on 22 months of data collection, providing an average of 439 days per site, it is clear that this 

WTS is a feasible on-site water treatment option for some healthcare facilities in low-income settings. 

Water and power were supplied by public utilities to the health centers for 90% of the observation 

period. When water and power were available, the treatment systems functioned as intended 82% of 

the time. The impact of integration of rainwater into the WTS and the impact of solar versus grid 

power, are complex and beyond the scope of this paper. Continuous operation of the WTS depended 

on a number of factors that are also fundamentally important to sustained use. Research on the 

sustainable delivery of health services provides a useful framework for understanding the feasibility 

and potential sustainability of WTS in healthcare facilities in low-income countries [32–35]. In a 

review examining the sustainability of health intervention programs both in the US and abroad, 

Shediak-Rizkallah and Bone (1998) frame the need for conceptual and operational definitions of 

sustainability; they identify “three major categories that determine program sustainability: project 

design and implementation factors, organizational factors, and environmental factors” [21]. In the 

context of this study, the aspects of project design and implementation that influence water purification 

system technical performance are: the equipment, installation design and construction quality, and the 

response time required to resolve interruptions due to equipment failure. Organizational determinants 

of the water purification system performance were the availability and capacity of health center 

personnel to perform routine operation and maintenance of the WTS, and the plumbing infrastructure 

at the health centers. Environmental determinants of performance included the availability of water 

and power, and the public infrastructure that provided water and power to the health centers (Figure 3).  

Environmental determinants 
Social, environmental, economic, political, and policy processes and dynamics 
that promote or inhibit program sustainability 

• Availability of water and power 
• Public infrastructure to provide water and power to the health centers 

 Organizational determinants 
Characteristics of the institution within which the program 
operates 

• Availability and capacity of health center personnel to 
perform routine operation and maintenance of the WTS 

• Plumbing infrastructure at the health centers 

  Programmatic determinants 
Design and implementation factors 

• WTS equipment 
• Installation design and construction quality 
• Response time required to resolve interruptions 

due to equipment failure 

Figure 3. Determinants of water treatment system performance derived from sustainable health services 

delivery framework *. (* Adapted from Sarriot et al. 2004 [34] and Schreier et al. 2011 [32].) 
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3.3.2. Factors Associated with Successful Operation of MF Systems 

Health center personnel adhered to routine operations and maintenance tasks, and maintained the 

water infrastructure at the health centers to the best of their ability. In contrast to community-based 

WTS, these health centers provided a ready pool of potential operators—the health center maintenance 

staff—who were technically proficient, equipped to follow the instructions for routine maintenance 

and operation of the system, and able to take on the additional responsibilities for maintaining systems. 

The daily and weekly operation and maintenance tasks did not require high levels of technical 

specialization and only required about 15 min per day. Deficits in the organizational determinants of 

performance accounted for less than one fifth of the total observed service interruptions.  

Similar to studies by Arnal in Mozambique and Ecuador, and Molelekwa in South Africa, we found 

that the membrane UF component of the WTS demonstrated robust performance, and trained operators 

were able to use and maintain them. In a review of decentralized systems for water purification,  

Peter-Varbanets et al. (2009) [13] identify that ultrafiltration systems had reliable performance, were 

easy to use and had simple maintenance procedures. There were no service interruptions due to the 

ultrafiltration component of the water treatment systems. However, the overall performance was 

limited by other more labor-intensive demands of the system hardware, specifically the service and 

repair needs of chlorine dosing systems. 

Simplicity of design and quality of construction facilitated successful operation of the WTS.  

In some sites, we observed that poor basic construction practices for trenching, laying, and joining 

pipes resulted in early repair needs that required substantial investment from the implementation 

partner to resolve. Site “D” (Supplemental Figure S5) had the least complex design and was the only site 

at which we observed uninterrupted operation of the WTS, whereas, site “C” (Supplemental Figure S1), 

where intermittent operation was observed, had the most complex configuration.  

Moreover, construction quality, as an aspect of the project implementation, was an important 

determinant of system performance and durability: sites with less plumbing, i.e., without chlorine 

contact chambers and multiple rain tanks, had fewer treatment interruptions due to leaks and pipe breaks.  

3.3.3. Factors Associated with Interruptions in Water Provision and Water Treatment 

Interruptions in water provision and water treatment occurred for 26% of the observation period. 

Seventy percent of the observed time when the systems were not operating was due to programmatic 

determinants: frequent chlorine dosing system failures and the long time to resolve service 

interruptions were the major contributing factors. Time to resolution varied by the complexity of the 

hardware failure and the availability of a trained service technician from the implementing 

organization. All of the health centers were within three hours travel time to the capital city, and spare 

parts were stocked in country by the implementing partner.  

Environmental factors accounted for one third of the days of service interruption, largely due to 

water shortages and, to a much lesser extent, power outages. Notably, the health centers selected for 

this intervention had more robust access to water and electricity than other health centers in Rwanda 

and the majority of health centers and communities in Sub-Saharan Africa [3,36]. In a similar program 
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in six hospitals in Ghana where GE Foundation installed WTS in 2006, the predominant reason for 

interruption in water treatment was lack of water supply (unpublished data). 

3.3.4 Factors Affecting Water Quality at Point of Use 

Overall, microbiological water quality in the health centers was good, but free chlorine residual was 

consistently below the WHO guideline intended for residual protection at points of use. The most 

common cause of service interruption attributable to internal factors in the WTS (excluding external 

factors of water shortage, power outage, and user bypass) was failure of the chlorine dosing system, 

and even when the WTS were fully functional, the median free chlorine residual in point-of-use water 

samples was negligible. Chlorine was provided to the health centers by the implementing organization 

in bulk quantities, and the system operators consistently and correctly prepared chlorine solution. 

However, the chlorine dosing systems did not deliver consistent water treatment: less than one third of 

water samples collected immediately following the WTS had free chlorine residual that met the WHO 

guideline for point-of-use water quality (Supplemental Table S1). The absence of routine servicing of 

chlorine dosing systems during the observation period, and the extent of failure of the chlorine dosing 

systems themselves, were driving programmatic determinants of the overall WTS performance during 

the observation period.  

Due to limited piped water infrastructure and frequent interruptions in water supply, health centers 

used point-of-use water storage containers to provide water for hand washing and drinking. When 

WTS were fully functional, one fifth of the water samples collected at the point-of-use came from 

storage containers. While storage containers provided an immediate solution for the need to provide 

adequate quantities of water, storing water in containers presents a risk of re-contamination and 

biofilm formation that is well documented in household water quality literature [11]. Adequate levels 

of residual disinfectant are essential for maintaining water quality in the piped water network and 

where containers are used. We observed significant deterioration of water quality in samples taken 

from containers versus taps. This is similar to findings from evaluations of WTS in Ecuador and 

Mozambique where post-treatment disinfection using chlorination was necessary to achieve 

recommended drinking water quality at the point of distribution [23,24].  

3.3.5. Study Strengths and Limitations 

This assessment is one of the first prospective performance evaluations of a WTS using membrane 

UF in a low-income country. We systematically monitored the technical operation and performance of 

the WTS and objectively evaluated the reasons for failure. We examined not only the technology and 

the context in which these systems were operated, but also how the implementation of the program 

influenced the performance and overall outcomes. We evaluated water quality at the WTS and at 

points of use within the health centers to examine the effectiveness of the treatment technology and 

post-treatment changes in water quality due to the condition of infrastructure and hygiene practices in 

these health care facilities. 

Communication between partners allowed for evidence-based decisions to improve the 

implementation of this project. The need to train HCF staff in non-complex routine maintenance and 

servicing, and to train Rwanda Ministry of Health technicians to perform complex servicing and 
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repairs was identified, and a nine-month training program was initiated in December 2014.  

The necessity for a more robust chlorine dosing system was identified and systems were installed in 

the final months of the observation period. 

There are specific limitations to this study: the purposive selection of a small number of health 

centers able to meet the criteria for participation in the intervention was not representative of health 

centers across Rwanda or healthcare facilities in Sub-Saharan Africa. However, we recognize that this 

technology requires the appropriate niche of environmental and organizational determinants for the 

system to add value through reliably providing large volumes of purified water. The timing of this 

research did not allow us to follow the performance of the WTS after the donor-sponsored 

implementation and monitoring period. Our observations are therefore limited to the feasibility and 

performance of the WTS during a time of intense oversight from both the research and the 

implementing organizations. This study did not include an exploration of the costs of WTS operation, 

maintenance, servicing and repair. Evaluation of the life cycle costs of water supply and water 

purification systems are valuable for considering organizational and environmental factors that affect 

sustainability, including access to operation and maintenance funds, supply chain for spare parts, and 

the need to train and re-train operators and technicians to overcome staff turn-over [37,38].  

Offsetting the costs of maintenance and operation of these systems is currently being explored through 

the integration of public kiosks that sell the treated drinking water at the health center to the 

populations within the health center catchment area, a model commonly employed in community-based 

settings. A forthcoming study by the authors examines the impact of these kiosks on the financial 

sustainability of the WTS for the health centers and on community drinking water practices and quality. 

4. Conclusions  

WTS utilizing membrane UF are a feasible on-site water treatment method for health care facilities 

and perhaps other institutions in low-income countries. These systems are capable of producing large 

volumes of high quality water; however, their application is limited to areas with robust access to 

water supply, and in most instances, electrical power. In settings where post-collection storage is 

common or even necessary, residual disinfection is essential for maintaining water quality. The routine 

operation and maintenance activities for the membrane UF component of the WTS studied did not 

require technical expertise, nor did it demand substantial time investment from the operator, whereas, 

the chlorination component frequently required maintenance and repairs that were beyond the capacity 

of the operator. We observed some deterioration of microbiological water quality during treatment 

interruptions and when water was stored in containers. We conclude that the low chlorine residual was 

insufficient to protect the water from post-treatment contamination in the health center plumbing 

network and in storage containers.  

This intervention focused on health centers in rural areas of Rwanda, yet the implications of our 

research inform the application of WTS in all settings where there are limitations in infrastructure, 

resources, capital, and/or human capacity. Our findings underscore the important role of programmatic 

factors, organizational determinants, and environmental constraints in the viability of WTS for  

low-resource settings. Communication between partners allowed for evidence from Rwanda HCF to be 

applied to improve the WTS components and the implementation of the program. This accelerated 
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learning has been applied to similar programs delivered in low-income settings in Africa, Asia and 

Latin America. 

In this intervention, internal health care facility personnel were responsible for WTS operation and 

demonstrated the capacity and appropriate oversight to ensure daily activities were performed. 

However, the external implementing organization identified and resolved all system repair needs, 

supplied consumable materials for chlorine disinfection, and assessed chlorine residual and 

microbiological water quality. In order for sustained operation of WTS beyond the end of the  

donor-sponsored program, supplies procurement, and system maintenance and repair needs that exceed 

the capacity of operators will need to be transferred to the regional and national health system and 

integrated into the management structures of those organizations. The implementation of WTS in other 

institutional or community-based settings, particularly where water flows in complex, piped networks 

or is stored in containers, must consider the person-time for routine operations, availability of 

technicians qualified to perform routine maintenance and repairs, and supply chains for replacement 

parts and chemicals for residual disinfection. Decisions to invest in WTS versus other interventions to 

improve quality of care and infection control—such as improving quantity and availability of water, 

improving sanitary facilities or solutions for hand washing at healthcare facilities—should be carefully 

considered as all of these factors are critical for safe heath service delivery. 
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